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The stability of a plane Couette flow in an ideal rigid-plastic layer with respect to small perturbations is 

considered. Sufficient integral estimates of the stability are given for an arbitrary unperturbed velocity 

profile. The spectral boundary-value problem is solved ~~ytic~ly in the domain of the most unstable 
long wavelengths. 

Shear flows have been investigated for various rheological models of bodies (for a non-Newtonian second 
order model in [l-3], where the constitutive relations are chosen in the Rivlin-Eric&en form [4], for 

viscoelastic liquids in the short memory approximation in [5], for ideal plastic anisotropic media in [6] and 
for viscoplastic media in [7]). The class of perturbations, with respect to which the stability of a system is 

studied, plays a substantial role. For instance, it has been shown in [l] that the non-Newtonian properties, 
elasticity and non-linearity, destabilize a flow. It has been established using energy methods [2] that, in the 
case of two-dimensional perturbations, elastoviscosity always stabilizes a flow while, in the case of spatial 
~~urbations, its role is determined by a ~~e~ionle~ relation between the parameters of the model. We 

also mention the mono~aph [S] in which these questions have been covered in detail. 

1. FORMULATION OF THE SPECTAL BOUNDARY-VALUE PROBLEM 

We shall make use of the results in [9] where an equation was derived for the one-dimensional shear 
stability in an incompressible viscoplastic layer with respect to two-dimensional perturbations (a 
generalized Orr-Sommerfeld equation). We will write this for an ideal rigid-plastic, Saint Venant 

medium for which the relation between the stress tensor CT,,,] and the strain rate tensor u,, is specified by 
the relationships 

crnj = -pS, + 2zu,. i U, m, j = 1,3 (1.1) 

where p is a function of the pressure, U is the maximum shear rate, ‘t is the shear yield stress [7] and 6, is 

the unit tensor. The stability equation has the form 

42r((p’/U)‘+(a/s+iu)(cp”-s29)-iu”cp=O (1.2) 

Here cp is the complex amplitude of the stream function w: ~(x,, xg, t)=[p(x,)exp(isx,+at), SER, 
ot + ia, = a E C, u(x,) is the velocity of the principal motion, specified in the whole layer {Q : 0 x x, c 1) 
and U=lu’l. All the quantities in (1.1) and (1.2) are reduced to dimensionless form in the basis 
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{p, V, h), here p is the constant density of the body, V and h are the characteristic velocity and the linear 
dimensions and z = z, l(pV2) (2, is the dimensional shear yield stress). Derivatives with respect to xg are 
denoted by primes. 

When r=O, Eq. (1.2) reduces to the Rayleigh equation, which has been investigated in detail. Theor- 
ems from the theory of hydrodynamic stability of an ideal fluid are applicable to the corresponding shear 

flow. These are the Rayleigh and Fjortjoft-Hoyland conditions and Howarth’s theorem “on a semicircle” 

[lo], which are associated with the sign of the curvature of the velocity profile within a domain of a flow. 
We know that non-uniqueness of the solution of the equations of motion of viscoplastic and ideally 

plastic bodies is possible. Generally speaking, there is an infinitely large number of values of U which 
correspond to one and the same shear stress 2. Consequently, in the case of flow between plane, parallel 

boundaries moving along the x1 axis with constant velocities (plane Couette flow), any monotonic 
function u(+), which takes specified values at the points 0 and 1, may be selected as the main profile. Any 
distribution of rigid zones (U=O) in the interval O< x3 c 1 is also possible. In this case, the boundary 

conditions in the perturbations have the form 

x350: cp=o; x3=1: Cp’O (1.3) 

We will next assume that the principal flow is characterized by an arbitrary, monotonically increasing 

function u(x& with a continuous derivative such that U d q and 

c &3 
I -<=, VCE[O,l] 
0 Wx,) 

if the tangential velocity undergoes discontinuities (zones of plastic flow with a monotonic and smooth 
profile alternate with rigid interstratifications, where the strain rate is zero), it is then sufficient to 

investigate the stability in each of these flow zones independently. In order to do this, the integration 
limits [0, l] in the subsequent operations must be replaced by other limits which are determined 
experimentally, for example, from the main motion. Here, the degenerate case when there are no such 
flow zones is also possible when the strain rate is the sum of certain S-functions. This case is precluded 

from the present treatment. 

2. INTEGRAL ESTIMATES OF STABILITY IN @(Q) SPACE 

Let cp be an element of a complex-valued Hilbert space R2(0) with the norm 

which has two continuous derivatives [ll] (here and everywhere henceforth, integration with respect to 
xg is carried out from 0 to 1). 

Let us multiply (1.2) by the complex conjugate function @ and integrate with respect to x3 from 0 to 1. 

When the boundary conditions (1.3) are taken into account, we obtain 

4-1, +a(I~+s2I~)/~+~~[(u"+s2u)l~l2+~l~~l2]~~+i~u'cpl-~3=O 

(1; = J~q+~)l*dr,, m=o.l; I,‘= Jhp’~*iu’~-~dr,) 

(2.2) 

We now equate the real part of the expression on the left-hand side of (2.2) to zero 

4-I; +a.($ +s*~:)s-’ - Ju’(cp’@), u!x3 = 0 (2.3) 

and make use of the Schwartz inequality in the space 77,(Q) with the norm (2.1) 

(2.4) 
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The following theorem follows from (2.3) and (2.4). 

Theorem. Let u(s, z) be an arbitrary characteristic number of the spectral boundary-value problem 
(1.2). (1.3). Then 

cr. Gs(qZoZ, -4r&l(f: +s2Z02) (25) 

A negative value of the right-hand side of inequality (2.5) is a sufficient condition for the stability of a 

plane, ideal plastic Couette flow. 

Corollary 1. If r/d > (12 + s2)/(8ds2), then a, c 0. 

Corollary 2. If z/q2 > 1(47t.r), then a. < 0. 

The proof of Corollaries 1 and 2 follows from the obvious inequality sl,Z, ~(1: +~‘I:)12 and 
Friedrich’s inequalities in the space 77,(a) with the norm (2.1) [ll] 

The corresponding critical curves 1 and 2 in the (a, z/g) plane are shown in Fig. 1. Since Corollaries 1 
and 2 are independent and sufficient, the following corollary holds. 

Corollary 3. If 

2-mi” 
q2 

(2.6) 

for fixed s,,, then u.(s,, r)cO. 
Thii means that, if, for a certain sO, the value of z/d lies above curve 2 in Fig. 1, then the initial flow is 

stable with respect to a perturbation with wave number s,,. Since, in a real perturbation ~(x,, xj, t) all the 
harmonics s > 0 are present, it is not possible to give stability estimates which are general, sufficient and 
independent of s . It can be seen from Fig. 1 that long-wavelength variations will be the most unstable and 
that an increase in r/g turns out to have a stabilizing influence. 

The stability of short waves (“shallow ripples”) and the character of long waves which increases with 

time has previously been pointed out on a number of occasions and, in particular, in problems associated 
with the deformation of strata in the Earth’s core (in a system of the type of an elastic lithosphere and a 

viscous or ideal asthenosphere [12] and others). 

We will estimate the minimum unstable wavelength h* (h = 2nl s) in a layer with parameters which are 
characteristic of geophysical processes p = 3000 kg/m3, V = 10 cm/year (high rate processes), q = 10 and 

2, = 10’ Pa (at temperatures below 2OO’C) [13]. According to (2.6), h* =8n2~/q2, that is, h* =3x1@. 
Even for the thinnest layers, such wavelengths exceed any linear dimensions of the Earth. Consequently, 
in the approximation of an ideal rigid-plastic model of the Couette flow of geomaterials, they are stable 
for any real perturbation s, and the constraint (2.6) does not have any substantial effect on them. 

u 1 2 s 

Fig. 1. 
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3. ANALYTIC SOLUTION OF THE SPECTRAL PROBLEM IN THE LONG- 
WAVELENGTH APPROXIMATION 

Let us now consider the spectral boundary-value problem (1.2), (1.3) in greater detail in the case when 

z)(x& = x3 (Couette flow in a narrow sense). Equation (1.2) can then be rewritten in the form 

(a+isx,+4uZ)cp”-s2(a+~~)cp=O (3.1) 

Making the following changes in the dependent and independent variables 

(P(~~)=q(~)exp(fsx~), {=-2G.q -ia-4u2) 

we reduce (3.2) to one of two differential equations with linear coefficients (Laplace equations) 

(3.2) 

the solution of which can be represented in series [14) 

(3.4) 

Hence, two fundamental solutions of Eq. (3.1) can be obtained by making the inverse changes of 

variables and taking the upper and lower signs in formulae (3.4). We substitute the fundamental solutions 
into the boundary conditions (1.3) and arrive, in a standard way, at the dispersion-wave equation 

IW,l=O. m,j=1.2 (35) 

The four elements of the characteristic determinant I W,, I are written in the following form 

w,,;,, =w-l+C(s$, 

W1232 =[*(p-S)-l++(S.P-~)]exp(f~) (3.6) 

C(s$)= i 5,(f2i~2)(*2)“(*a-l+n)B1, p=i(a+42s*) 
,n=l n!(n+l)! 

Since a. = fL -4zr’, the stability criterion will have the form 

p,, < 4.5s2 (3.7) 

We expand the left-hand side of (3.5) in series in s and retain the first three non-zero terms of the 

expansion 

IW,il-s(Wo+W,s+(W2+2iTW~T’)s2+...) (3.8) 

The coefficients W,, WI, W,, V$‘), which depend solely on p, are products of double series. However, 
they can be successfully summed in finite form [U]. Omitting the algebra when fl f 0 we have 

W, =-(ch2p-1-f12)/B2, W, =(l+Bsh2B-ch2B)/p” 

w2 =-[3(2+p)(ch28-l)-6Bsh28-B4]/(6B4) 
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and, when p + 0, W, = -1, W, = W, (‘) = 0, W, = -116. Here, C is Euler’s constant and Ei(z) is the exponen- 

tial integral. 
We also represent fl( s, z) in the form of a series in s 

B(s.7) = : B, (M 
n=O 

(3.9) 

In order to find p.(z), it is necessary to substitute (3.9) into (3.8) and then (3.8) into (3.5) and equate 
the coefficients of powers of s to zero. On carrying out this operation three times, we obtain 

(3.10) 

A, = sin 2~ - ~0 

where K ,, = 1.39155 is the positive root of the equation eos 2~ = l-tc2. When account is taken of (3.10) the 

condition of stability is written in the following fortn 

fK0 - A,s2 I A2 < 4~ 

or approximately 

z>f(0.5895/s2 -0.015) 

Since we have confined ourselves to just three terms of the asymptotic expansions (3.8) and (3.9), the 

result obtained holds if s341 (the long-wave approximation). 
This work was carried out with the financial support of the Russian Fund for Fundamental Research 

(93-013-16529). 
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